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Strategic Linear Contextual Bandits
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joint work with Aadirupa Saha, Christos Dimitrakakis, Haifeng Xu



maximizing platform performance

(1) make good recommendations
(2) incentivize good content / truthfulness 

maximizing individual exposure / profit 

report content
and data strategically

recommends the 
channels’ content
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Theoretical Results: 

1) Under GGTM, being truthful is a 𝑇-Nash Equilibrium. 

2) If the arms play any NE under GGTM, then 𝑅𝑇(GGTM) ≤ 𝐾 𝑇 + 𝐾2 𝐾𝑇

Greedy Selection: 

Play 𝑖𝑡 = arg max
𝑖∈alive

𝜇𝑡,𝑖 

Grim Trigger:

If σ𝑡 𝜇𝑡,𝑖 > σ𝑡 𝑟𝑡,𝑖
∗ + 𝑛𝜏 𝑖 , eliminate arm i.

cost of mechanism design 

cost of manipulation 
& uncertainty



Suppose the environment 𝜽∗ is unknown …

Things get complicated ...

We observe: gamed context 𝒙𝒕,𝒊 and reward 𝒓𝒕,𝒊
∗ ≔ ⟨𝜽∗, 𝒙𝒕,𝒊

∗ ⟩ + 𝜂𝑡

We don‘t observe: true context 𝒙𝒕,𝒊
∗  and parameter 𝜽∗

The arms can manipulate our estimate of 𝜽∗ ... 

 Estimating 𝜽∗ accurately becomes impossible?!

 
Another time ...



• Strategic Interactive Decision-Making

• Reinforcement Learning + Mechanism Design

• Objective: Strategic Robustness + Incentive Alignment

• Strategic Linear Contextual Bandits

• Strategic agents            manipulating contexts

• Grim Trigger Mechanism         from Iterated Social Dilemmas

• Mechanism Design becomes approximate 

• There are many more problems like this left to study ... 

Short Recap
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