Strategic Interactive Decision-Making

Thomas Kleine Buening
The Alan Turing Institute & University of Oxford

December 5, 2024

ACTION
A BOUNTY FOR
DEAD COBRAS!

ACTION
A BOUNTY FOR
DEAD COBRAS!

EFFECT

PEOPLE START COBRA FARMING

ACTION A BOUNTY FOR DEAD COBRAS!

EFFECT

PEOPLE START
COBRA FARMING

Anything that can go wrong will go wrong.

Murphy's Law

ACTION A BOUNTY FOR DEAD COBRAS!

EFFECT

PEOPLE START
COBRA FARMING

Any system that can be gamed will be gamed.

Supervised Learning

Supervised Learning

Adversarial Robustness

Adversarial Robustness

Supervised Learning

Adversarial Robustness

Adversarial Robustness

Supervised Learning

Adversarial Robustness Strategic Classification

Adversarial Robustness
Corruption-Robust RL

Supervised Learning

Adversarial Robustness

<u>Strategic Classification</u>

Reinforcement Learning

Adversarial Robustness
Corruption-Robust RL

Supervised Learning

Adversarial Robustness
<u>Strategic Classification</u>

Reinforcement Learning

Adversarial Robustness
Corruption-Robust RL

Mechanism Design

Supervised Learning

Adversarial Robustness

<u>Strategic Classification</u>

Strategic Interactive

Decision-Making

Adversarial Robustness
Corruption-Robust RL

Mechanism Design

Strategic Linear Contextual Bandits

joint work with Aadirupa Saha, Christos Dimitrakakis, Haifeng Xu

recommends the channels' content

maximizing individual exposure / profit

maximizing platform performance

- (1) make good recommendations
- (2) incentivize good content / truthfulness

• T rounds, K arms (

For t = 1, ..., T:

• T rounds, K arms (

• T rounds, K arms (

For t = 1, ..., T:

1) Algorithm observes arm-specific contexts $x_{t,1}^* = \dots, x_{t,K}^* = \dots$

,...,
$$x_{t.K}^* =$$

$$\in \mathbb{R}^d$$

• T rounds, K arms (

- 1) Algorithm observes arm-specific contexts $x_{t,1}^* = \dots, x_{t,K}^* = \in \mathbb{R}^d$
- 2) Algorithm plays arm $i_t = \in [K]$ and receives reward $r_t^*(i_t) \coloneqq$

• T rounds, K arms (

- 2) Algorithm plays arm $i_t = \in [K]$ and receives reward $r_t^*(i_t) \coloneqq$

• T rounds, K arms (

- 1) Algorithm observes arm-specific contexts $x_{t,1}^* = \{x_t\}$, ..., $x_{t,K}^* = \{x_t\}$
- 2) Algorithm plays arm $i_t = \bigcup_{t \in K} \in [K]$ and receives reward $r_t^*(i_t) \coloneqq$

• T rounds, K arms (

- 2) Algorithm plays arm $i_t = \mathbb{E} \in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

• T rounds, K arms (

- 2) Algorithm plays arm $i_t = \{k\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t \}$

• T rounds, K arms (

- 2) Algorithm plays arm $i_t = \mathbb{E} \in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

• T rounds, K arms (

For t = 1, ..., T:

- 2) Algorithm plays arm $i_t = \begin{bmatrix} E \\ E \end{bmatrix} \in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

Algorithm maximizes cumulative reward

$$\sum_{t=1}^{T} r_t(i_t)$$

Linear Contextual Bandits

• T rounds, K arms (

For t = 1, ..., T:

- 1) Algorithm observes arm-specific contexts $x_{t,1}^* = \{x_t, x_{t,k}^* = x_t\} \in \mathbb{R}^d$ 2) Algorithm plays arm $i_t = \{x_t, x_{t,i_t}^* = x_t\} \in \mathbb{R}^d$ unknown

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

Linear Contextual Bandits

• T rounds, K arms (

For t = 1, ..., T:

- 1) Algorithm observes arm-specific contexts $x_{t,1}^* = \{x_t, x_{t,K}^* = \{x_t, x_$ unknown

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

Linear Contextual Bandits

• T rounds, K arms (

For t = 1, ..., T:

- 1) Algorithm observes arm-specific contexts $x_{t,1}^* = \{x_t, x_{t,K}^* = \{x_t, x_$ unknown

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

arm = strategic agent

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a gamed context $x_{t,i} = \in \mathbb{R}^d$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

arm = strategic agent

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a gamed context $x_{t,i} = \in \mathbb{R}^d$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{k\}$ $\in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

arm = strategic agent

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{k\}$ $\in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

arm = strategic agent

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{k\}$ $\in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} 1(i_t = i)\right]$$

Arms respond in Equilibrium: arm strategies ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} 1(i_t = i)\right]$$

Arms respond in **Equilibrium**: arm strategies ∈ NE(Algorithm)

For
$$t = 1, ..., T$$
: \checkmark repeated interaction \bigcirc

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} 1(i_t = i)\right]$$

Arms respond in **Equilibrium**: arm strategies ∈ NE(Algorithm)

For t = 1, ..., T: \checkmark repeated interaction \bigcirc

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a gamed context $x_{t,i} = \mathbb{R}^d$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} 1(i_t = i)\right]$$

Arms respond in **Equilibrium**: arm strategies ∈ NE(Algorithm)

For
$$t = 1, ..., T$$
: \checkmark repeated interaction \bigcirc

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- unbounded manipulation 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} 1(i_t = i)\right]$$

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For
$$t = 1, ..., T$$
: \checkmark repeated interaction \bigcirc

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- unbounded manipulation 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

multiple competing agents

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

Every Arm *i* maximizes its **#selections**

Arms respond in **Equilibrium**: arm strategies ∈ NE(Algorithm)

For t = 1, ..., T: \checkmark repeated interaction \bigcirc

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a gamed context $x_{t,i} = \mathbb{R}^d$ to the Algorithm
- 3) Algorithm plays arm $i_t = \bigcup_{t \in [K]} \in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$ multiple competing agents unknown environment

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

Every Arm *i* maximizes its **#selections**

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T: repeated interaction

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- unbounded manipulation 2) Every arm $i \in [K]$ reports a gamed context $x_{t,i} = \mathbb{R}^d$ to the Algorithm

multiple competing agents

unknown environment internal state word environment

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

Every Arm i maximizes its #selections

$$\mathbb{E}\left|\sum_{t=1}^{I}1(i_{t}=i)\right|$$

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T: repeated interaction

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- unbounded manipulation 2) Every arm $i \in [K]$ reports a gamed context $x_{t,i} = \mathbb{R}^d$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

multiple competing agents

known environment environment

Algorithm minimizes expected regret

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{i \in [K]} \langle \theta^*, x_{t,i}^* \rangle - \langle \theta^*, x_{t,i_t}^* \rangle\right]$$

Every Arm i maximizes its #selections

$$\mathbb{E}\left|\sum_{t=1}^{T}1(i_{t}=i)\right|$$

Arms respond in **Equilibrium**: arm strategies ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

known environment environment

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes its context $x_{t,i}^* = \mathbb{R}^d$
- 2) Every arm $i \in [K]$ reports a **gamed** context $x_{t,i} = \mathbb{R}^d$ to the **Algorithm**
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

known environment internal state environment

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes true avg reward $\mu_{t,i}^* = \bigcirc \in \mathbb{R}$
- 2) Every arm $i \in [K]$ reports a gamed context $x_{t,i} = \mathbb{R}^d$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{K\}$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

known environment internal state environment

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes true avg reward $\mu_{t,i}^* = \bigcirc \in \mathbb{R}$
- 2) Every arm $i \in [K]$ reports a gamed value $\mu_{t,i} = \bigoplus \in \mathbb{R}$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{k\}$ $\in [K]$ and receives reward $r_t^*(i_t) \coloneqq \langle \theta^*, x_{t,i_t}^* \rangle + \eta_t$

known environment internal state ward environment

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes true avg reward $\mu_{t,i}^* = \bigcirc \in \mathbb{R}$
- 2) Every arm $i \in [K]$ reports a gamed value $\mu_{t,i} = \bigoplus \in \mathbb{R}$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{E\}$ $\in [K]$ and receives reward $r_t^*(i_t) \coloneqq \mu_{t,i_t}^* + \eta_t$

known environment

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes true avg reward $\mu_{t,i}^* = \bigcirc \in \mathbb{R}$
- 2) Every arm $i \in [K]$ reports a gamed value $\mu_{t,i} = \bigoplus \in \mathbb{R}$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{E(t)\}$ and receives reward $r_t^*(i_t) \coloneqq \mu_{t,i_t}^* + \eta_t$

known environment internal state server of the server of t

- Let's swap features $x \in \mathbb{R}^d$ for the implied avg reward $\mu := \langle \theta^*, x \rangle \in \mathbb{R}$
- We're happy when the arms "cooperate" and the *reports* $\mu_{t,i}$ match the **truth** $\mu_{t,i}^*$

Arms respond in **Equilibrium**: **arm strategies** ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes true avg reward $\mu_{t,i}^* = \bigcirc \in \mathbb{R}$
- 2) Every arm $i \in [K]$ reports a gamed value $\mu_{t,i} = \bigoplus \in \mathbb{R}$ to the Algorithm
- 3) Algorithm plays arm $i_t = \{k\} \in [K]$ and receives reward $r_t^*(i_t) \coloneqq \mu_{t,i_t}^* + \eta_t$

known environment internal state servironment

- Let's swap features $x \in \mathbb{R}^d$ for the implied avg reward $\mu := \langle \theta^*, x \rangle \in \mathbb{R}$
- We're happy when the arms "cooperate" and the reports $\mu_{t,i} \iff$ match the truth $\mu_{t,i}^* \iff$

Arms respond in **Equilibrium**: arm strategies ∈ NE(Algorithm)

For t = 1, ..., T:

- 1) Every arm $i \in [K]$ privately observes true avg reward $\mu_{t,i}^* = \bigoplus_{i \in K} i \in \mathbb{R}$
- 2) Every arm $i \in [K]$ reports a gamed value $\mu_{t,i} = \bigoplus \in \mathbb{R}$ to the Algorithm
- 3) Algorithm plays arm $i_t = [K]$ and receives reward $r_t^*(i_t) \coloneqq \mu_{t,i_t}^* + \eta_t$

known environment

- Let's swap features $x \in \mathbb{R}^d$ for the implied avg reward $\mu \coloneqq \langle \theta^*, x \rangle \in \mathbb{R}$
- We're happy when the arms "cooperate" and the reports $\mu_{t,i} \iff$ match the truth $\mu_{t,i}^*$

How can we incentivize the arms to "cooperate" with us while minimizing regret?

How can we incentivize the arms to "cooperate" with us?

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

How can we incentivize the arms to "cooperate" with us?

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

How can we incentivize the arms to "cooperate" with us?

From Iterated Social Dilemmas: "If you defect once, I will defect permanently."

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

How can we incentivize the arms to "cooperate" with us?

From Iterated Social Dilemmas: "If you defect once, I will defect permanently."

If reported avg reward $\mu_{t,i}$ > true avg reward $\mu_{t,i}^*$, eliminate arm i forever.

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

How can we incentivize the arms to "cooperate" with us?

From Iterated Social Dilemmas: "If you defect once, I will defect permanently."

If reported avg reward $\mu_{t,i}$ > true avg reward $\mu_{t,i}^*$, eliminate arm i forever.

But we don't observe $\mu_{t,i}^*$

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

How can we incentivize the arms to "cooperate" with us?

From Iterated Social Dilemmas: "If you defect once, I will defect permanently."

If reported avg reward $\mu_{t,i}$ > observed (true) reward $r_{t,i}^*$, eliminate arm i forever.

But we don't observe $\mu_{t,i}^*$

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

How can we incentivize the arms to "cooperate" with us?

From Iterated Social Dilemmas: "If you defect once, I will defect permanently."

If reported avg reward $\mu_{t,i}$ > observed (true) reward $r_{t,i}^*$, eliminate arm i forever.

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

How can we incentivize the arms to "cooperate" with us?

From Iterated Social Dilemmas: "If you defect once, I will defect permanently."

If reported avg reward $\sum_{t} \mu_{t,i} > \text{optimistic estimate } \sum_{t} r_{t,i}^* + \sqrt{n_{\tau}(i)}$ eliminate arm i forever.

- 1) each arm privately observes $\mu_{t,i}^*$
- 2) each arm tells us $\mu_{t,i}$
- 3) We observe $r_{t,i_t}^* \sim D(\mu_{t,i_t}^*)$

The observations $\sum_t r_{t,i}^*$ concentrate around the average $\sum_t \mu_{t,i}^*$

The observations $\sum_t r_{t,i}^*$ concentrate around the average $\sum_t \mu_{t,i}^*$

reports — truth

This implies that with high probability:

If
$$\sum_t \mu_{t,i} - \sum_t \mu_{t,i}^* > 2\sqrt{n_{\tau}(i)}$$
, we eliminate arm i .

The observations $\sum_t r_{t,i}^*$ concentrate around the average $\sum_t \mu_{t,i}^*$

This implies that with high probability:

If
$$\sum_t \mu_{t,i} - \sum_t \mu_{t,i}^* > 2\sqrt{n_{\tau}(i)}$$
, we eliminate arm i .

The arms can misreport to us ... but not too often

Greedy Selection:

$$Play i_t = \arg \max_{i \in alive} \mu_{t,i}$$

If
$$\sum_{t} \mu_{t,i} > \sum_{t} r_{t,i}^* + \sqrt{n_{\tau}(i)}$$
, eliminate arm i.

Greedy Selection:

$$Play i_t = \arg \max_{i \in alive} \mu_{t,i}$$

If
$$\sum_{t} \mu_{t,i} > \sum_{t} r_{t,i}^* + \sqrt{n_{\tau}(i)}$$
, eliminate arm i.

Theoretical Results:

Greedy Selection:

$$Play i_t = \arg \max_{i \in alive} \mu_{t,i}$$

Grim Trigger:

If
$$\sum_{t} \mu_{t,i} > \sum_{t} r_{t,i}^* + \sqrt{n_{\tau}(i)}$$
, eliminate arm i.

Theoretical Results:

1) Under **GGTM**, being **truthful** is a \sqrt{T} -Nash Equilibrium.

Greedy Selection:

$$Play i_t = \arg\max_{i \in alive} \mu_{t,i}$$

Grim Trigger:

If $\sum_{t} \mu_{t,i} > \sum_{t} r_{t,i}^* + \sqrt{n_{\tau}(i)}$, eliminate arm i.

Theoretical Results:

- 1) Under **GGTM**, being **truthful** is a \sqrt{T} -Nash Equilibrium.
- 2) If the arms play any NE under **GGTM**, then $R_T(\mathbf{GGTM}) \leq K\sqrt{T} + K^2\sqrt{KT}$

Greedy Selection:

Play
$$i_t = \arg \max_{i \in \text{alive}} \mu_{t,i}$$

Grim Trigger:

If $\sum_t \mu_{t,i} > \sum_t r_{t,i}^* + \sqrt{n_\tau(i)}$, eliminate arm i.

Theoretical Results:

- 1) Under **GGTM**, being **truthful** is a \sqrt{T} -Nash Equilibrium.
- 2) If the arms play any NE under **GGTM**, then $R_T(\mathbf{GGTM}) \leq (K\sqrt{T}) + K^2\sqrt{KT}$

Greedy Selection:

Play
$$i_t = \arg \max_{i \in \text{alive}} \mu_{t,i}$$

Grim Trigger:

If $\sum_{t} \mu_{t,i} > \sum_{t} r_{t,i}^* + \sqrt{n_{\tau}(i)}$, eliminate arm i.

Theoretical Results:

1) Under **GGTM**, being **truthful** is a \sqrt{T} -Nash Equilibrium.

2) If the arms play any NE under **GGTM**, then $R_T(\mathbf{GGTM}) \leq (K\sqrt{T}) + (K^2\sqrt{KT})$

cost of mechanism design

Suppose the environment θ^* is unknown ...

Things get complicated ...

We observe: gamed context $x_{t,i}$ and reward $r_{t,i}^* \coloneqq \langle \theta^*, x_{t,i}^* \rangle + \eta_t$

We don't observe: true context $x_{t,i}^*$ and parameter θ^*

The arms can manipulate our estimate of θ^* ...

Estimating θ^* accurately becomes impossible?!

Another time ...

Short Recap

- Strategic Interactive Decision-Making
 - Reinforcement Learning + Mechanism Design
 - Objective: Strategic Robustness + Incentive Alignment

- Strategic Linear Contextual Bandits
 - Strategic agents manipulating contexts
 - Grim Trigger Mechanism from Iterated Social Dilemmas
 - Mechanism Design becomes approximate

• There are many more problems like this left to study ...

