ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive Non-Stationary Dueling Bandits

Thomas Kleine Buening ¹ Aadirupa Saha ²

¹University of Oslo ²TTIC / Apple ML Research

Non-Stationary Dueling Bandits

- Sequence of preference matrices $\mathbf{P}_1, \dots, \mathbf{P}_T \in [0, 1]^{K \times K}$ with $\mathbf{P}_t(a, b) = 1 \mathbf{P}_t(b, a)$ and $\mathbf{P}_t(a, a) = 1/2$.
- The stochastic (i.e., stationary) dueling bandit problem is recovered in the special case where ${f P}_1=\dots={f P}_T$.
- Given a preference matrix \mathbf{P}_t , arm $a_t^* \in [K]$ is called the **Condorcet Winner** of \mathbf{P}_t if $\mathbf{P}_t(a_t^*,b) > 1/2$ for all $b \neq a_t^*$.
- Every round $t \in [T]$:
- select a pair of actions $(a_t, b_t) \in [K] \times [K]$
- observe preference feedback $o_t(a_t,b_t) \sim \text{Ber}(\mathbf{P}_t(a_t,b_t))$
- Preference-strength of arm a over arm b in round t:

$$\delta_t(a,b) := \mathbf{P}_t(a,b) - 1/2.$$

Regret Objective: Dynamic Regret

$$DR(T) := \sum_{t=1}^{T} \frac{\delta_t(a_t^*, a_t) + \delta_t(a_t^*, b_t)}{2}.$$

Transitivity Assumptions:

Every \mathbf{P}_t satisfies for $a \succ_t b \succ_t c$:

- Strong Stochastic Transitivity (SST): $\delta_t(a,c) \geq \delta_t(a,b) \vee \delta_t(b,c)$.
- Stochastic Triangle Inequality (STI): $\delta_t(a,c) \leq \delta_t(a,b) + \delta_t(b,c)$.

Prior Work

Main limitations of prior work [1, 2]:

- pessimistic notions of non-stationarity.
- non-adaptive parameter tuning, i.e., require knowledge of the number of preference changes in advance.

Research Questions

- Q1. Can we guarantee low dynamic regret for **meaningful notions of non-stationarity**?
- Q2. Can we achieve near-optimal regret **adaptively**, without prior knowledge of the underlying non-stationarity?

Notions of Non-Stationarity

1 Preference Switches (weak)

$$S^{\mathtt{P}} \coloneqq \sum_{t=2}^{T} \mathbf{1} \{ \mathbf{P}_t \neq \mathbf{P}_{t-1} \}$$

2 Condorcet Winner Switches (strong)

$$S^{ extsf{CW}}\coloneqq\sum_{t=2}^{T}\mathbf{1}\{a_{t}^{*}
eq a_{t-1}^{*}\}$$

3 Significant Condorcet Winner Switches (stronger)

Let $\nu_0\coloneqq 1$ and define ν_{i+1} recursively as the first round in $[\nu_i,T)$ such that for all arms $a\in [K]$ there exist rounds $\nu_i\le s_1< s_2< \nu_{i+1}$ such that $\sum_{t=s_1}^{s_2}\delta_t(a_t^*,a)\ge \sqrt{K(s_2-s_1)}$. Let \tilde{S}^{CW} denote the number of such rounds $\nu_1,\ldots,\nu_{\tilde{S}^{\text{CW}}}$.

4 Total Variation (weak)

$$V := \sum_{t=2}^{T} \max_{a,b \in [K]} |\mathbf{P}_t(a,b) - \mathbf{P}_{t-1}(a,b)|$$

5 Condorcet Winner Variation (strong)

$$\tilde{V} \coloneqq \sum_{t=2}^{T} \max_{a \in [K]} |\mathbf{P}_t(a_t^*, a) - \mathbf{P}_{t-1}(a_t^*, a)|$$

Observation: $\tilde{S}^{\text{CW}} \leq S^{\text{CW}} \leq S^{\text{P}}$ and $\tilde{V} \leq V$.

Overview of Results

Algorithm	$\mathbf{DR}(\mathbf{T})$	Notion	Adaptive?	SST&STI?
ANACONDA	$\tilde{O}(K\sqrt{S^{ ext{CW}}T})$	2	yes	no
ANACONDA	$ ilde{O}(K\sqrt{ ilde{S}^{ exttt{CW}}T})$	3	yes	yes
ANACONDA	$ ilde{O}(ilde{V}^{1/3}(KT)^{2/3})$	5	yes	yes
[3]	$ ilde{O}(\sqrt{K ilde{S}^{ exttt{CW}}T})$	3	yes	yes
[2]	$\tilde{O}(\sqrt{KS^{\mathrm{P}}T})$	1	no	no
[2]	$ ilde{O}((KV)^{1/3}T^{2/3})$	4	no	no
[1]	$\tilde{O}(K\sqrt{S^{\mathrm{P}}T})$	1	no	no

Lower Bounds: $\Omega(\sqrt{KS^{\text{CW}}T})$ and $\Omega((K\tilde{V})^{1/3}T^{2/3})$. Recently, [3] showed that SST and STI are necessary conditions in order to achieve $O(\sqrt{K\tilde{S}^{\text{CW}}T})$ regret. In fact, there exists a family of problem instances such that $\tilde{S}^{\text{CW}}=0$, but no algorithm can achieve o(T) regret.

Algorithm

Gap Estimates: Importance weighted estimates of $\delta_t(a,b)$:

$$\hat{\delta}_t(a,b) = |\mathcal{A}_t|^2 \mathbf{1}_{\{a_t = a, b_t = b\}} o_t(a,b) - 1/2. \tag{1}$$

Elimination Rule: Eliminate an arm $a \in [K]$ in episode ℓ and round t if there exist rounds $t_{\ell} \leq s_1 < s_2 \leq t$ such that

$$\max_{a' \in [K]} \sum_{t=s_1}^{s_2} \hat{\delta}_t(a', a) > C \log(T) K \sqrt{(s_2 - s_1) \vee K^2}.$$

Algorithm 1 ANACONDA: Adaptive Non-stationAry CONdorcet Dueling Algorithm

```
1: input: horizon T
2: t \leftarrow 1
```

 $_{\mathsf{3:}}$ while $t \leq T$ do

4: $t_{\ell} \leftarrow t$

 $\mathcal{A}_{\mathrm{good}} \leftarrow \lfloor K \rfloor$ for $m \in \{2, \dots, 2^{\lceil \log(T) \rceil} \}$ and $s \in \{t_\ell + 1, \dots, T \}$ do

7: Sample $B_{s,m} \sim \mathrm{Bern}\Big(\frac{1}{\sqrt{m(s-t_\ell)}}\Big)$

8: Run CondaLet $(t_\ell, T+1-t_\ell)$

Algorithm 2 CondaLet (t_0, m_0)

- input: scheduled time t_0 , duration m_0 , replay schedule $\{B_{s,m}\}_{s,m}$
- 2: initialize: $t \leftarrow t_0$, $\mathcal{A}_t \leftarrow [K]$
- 3: **while** $t \leq T$ and $t \leq t_0 + m_0$ and $\mathcal{A}_{\mathrm{good}} \neq \emptyset$ **do**
- Play arm-pair $(a_t, b_t) \in \mathcal{A}_t$ with each arm being selected with probability $1/|\mathcal{A}_t|$
- 5: $\mathcal{A}_{good} \leftarrow \mathcal{A}_{good} \setminus \{a \in [K] : \exists [s_1, s_2] \subseteq [t_\ell, t) \text{ s.t. (2) holds} \}$
- 6: $\mathcal{A}_{local} \leftarrow \mathcal{A}_{local}$
- $t \leftarrow t + 1$
- if $\exists m$ such that $B_{t,m}=1$ then
- Run CondaLet(t,m) with $m=\max\{m\in\{2,\ldots,2^{\lceil\log(T)\rceil}\}\colon B_{t,m}=1\}$
- 10: $\mathcal{A}_t \leftarrow \mathcal{A}_{local} \setminus \{a \in [K] : \exists [s_1, s_2] \subseteq [t_0, t) \text{ s.t. (2) holds} \}$

Challenges under Preference-Based Feedback

- We generally cannot decompose regret, as is done in non-stationary MAB, due to the lack of transitivity.
- It is more difficult to detect a bad arm, since an arm can beat every arm except the best arm (by a large margin).

Future Work

 Other solution concepts, e.g., Borda scores, Copeland winner, von Neumann winner

References

- [1] P. Kolpaczki, V. Bengs, and E. Hüllermeier. Non-stationary dueling bandits. arXiv preprint arXiv:2202.00935, 2022.
- [2] A. Saha and S. Gupta. Optimal and efficient dynamic regret algorithms for non-stationary dueling bandits. In *International Conference on Machine Learning*, pages 19027–19049. PMLR, 2022.
- [3] J. Suk and A. Agarwal. When can we track significant preference shifts in dueling bandits? arXiv preprint:2302.06595, 2023.

thomkl@ifi.uio.no AISTATS 2023