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Non-Stationary Dueling Bandits

Sequence of preference matrices P1, . . . , PT ∈ [0, 1]K×K with
Pt(a, b) = 1−Pt(b, a) and Pt(a, a) = 1/2.

The stochastic (i.e., stationary) dueling bandit problem is
recovered in the special case where P1 = · · · = PT .

Given a preference matrix Pt, arm a∗t ∈ [K] is called the
CondorcetWinner of Pt if Pt(a∗t , b) > 1/2 for all b 6= a∗t .

Every round t ∈ [T ]:
- select a pair of actions (at, bt) ∈ [K]× [K]
- observe preference feedback ot(at, bt) ∼ Ber(Pt(at, bt))

Preference-strength of arm a over arm b in round t:

δt(a, b) := Pt(a, b)− 1/2.

Regret Objective: Dynamic Regret

DR(T ) :=
T∑

t=1

δt(a∗t , at) + δt(a∗t , bt)
2

.

Transitivity Assumptions:

Every Pt satisfies for a �t b �t c:

Strong Stochastic Transitivity (SST): δt(a, c) ≥ δt(a, b) ∨ δt(b, c).
Stochastic Triangle Inequality (STI): δt(a, c) ≤ δt(a, b) + δt(b, c).

PriorWork

Main limitations of prior work [1, 2]:

pessimistic notions of non-stationarity.

non-adaptive parameter tuning, i.e., require knowledge of
the number of preference changes in advance.

Research Questions

Q1. Can we guarantee low dynamic regret formeaningful
notions of non-stationarity?

Q2. Can we achieve near-optimal regret adaptively, without
prior knowledge of the underlying non-stationarity?

Notions of Non-Stationarity

1 Preference Switches (weak)

SP :=
T∑

t=2
1{Pt 6= Pt−1}

2 CondorcetWinner Switches (strong)

SCW :=
T∑

t=2
1{a∗t 6= a∗t−1}

3 Significant CondorcetWinner Switches (stronger)

Let ν0 := 1 and define νi+1 recursively as the first round in [νi, T )
such that for all arms a ∈ [K] there exist rounds νi ≤ s1 < s2 <

νi+1 such that
∑s2

t=s1
δt(a∗t , a) ≥

√
K(s2 − s1). Let S̃CW denote the

number of such rounds ν1, . . . , νS̃CW.

4 Total Variation (weak)

V :=
T∑

t=2
max

a,b∈[K]
|Pt(a, b)−Pt−1(a, b)|

5 CondorcetWinner Variation (strong)

Ṽ :=
T∑

t=2
max
a∈[K]
|Pt(a∗t , a)−Pt−1(a∗t , a)|

Observation: S̃CW ≤ SCW ≤ SP and Ṽ ≤ V .

Overview of Results

Algorithm DR(T) Notion Adaptive? SST&STI?

ANACONDA Õ(K
√

SCWT ) 2 yes no
ANACONDA Õ(K

√
S̃CWT ) 3 yes yes

ANACONDA Õ(Ṽ 1/3(KT )2/3) 5 yes yes
[3] Õ(

√
KS̃CWT ) 3 yes yes

[2] Õ(
√

KSPT ) 1 no no
[2] Õ((KV )1/3T 2/3) 4 no no
[1] Õ(K

√
SPT ) 1 no no

Lower Bounds: Ω(
√

KSCWT ) and Ω((KṼ )1/3T 2/3). Recently, [3]
showed that SST and STI are necessary conditions in order
to achieve O(

√
KS̃CWT ) regret. In fact, there exists a family of

problem instances such that S̃CW = 0, but no algorithm can
achieve o(T ) regret.

Algorithm

Gap Estimates: Importance weighted estimates of δt(a, b):
δ̂t(a, b) = |At|2 1{at=a,bt=b}ot(a, b)− 1/2. (1)

Elimination Rule: Eliminate an arm a ∈ [K] in episode ` and
round t if there exist rounds t` ≤ s1 < s2 ≤ t such that

max
a′∈[K]

s2∑
t=s1

δ̂t(a′, a) > C log(T )K
√

(s2 − s1) ∨K2. (2)

Algorithm 1 ANACONDA: Adaptive Non-stationAry CONdorcet Dueling Algorithm
1: input: horizon T
2: t← 1
3: while t ≤ T do
4: t` ← t
5: Agood ← [K]
6: for m ∈ {2, . . . , 2dlog(T )e} and s ∈ {t` + 1, . . . , T} do
7: Sample Bs,m ∼ Bern

(
1√

m(s−t`)

)
8: Run CondaLet(t`, T + 1− t`)

Algorithm 2 CondaLet(t0, m0)

1: input: scheduled time t0, duration m0, replay schedule {Bs,m}s,m

2: initialize: t← t0, At ← [K]
3: while t ≤ T and t ≤ t0 + m0 and Agood 6= ∅ do
4: Play arm-pair (at, bt) ∈ At with each arm being selected with probability 1/|At|
5: Agood ← Agood \ {a ∈ [K] : ∃[s1, s2] ⊆ [t`, t) s.t. (2) holds}
6: Alocal ← At

7: t← t + 1
8: if ∃m such that Bt,m = 1 then
9: Run CondaLet(t, m) with m = max{m ∈ {2, . . . , 2dlog(T )e} : Bt,m = 1}
10: At ← Alocal \ {a ∈ [K] : ∃[s1, s2] ⊆ [t0, t) s.t. (2) holds}

Challenges under Preference-Based Feedback

We generally cannot decompose regret, as is done in
non-stationary MAB, due to the lack of transitivity.

It is more difficult to detect a bad arm, since an arm can
beat every arm except the best arm (by a large margin).

FutureWork

Other solution concepts, e.g., Borda scores, Copeland
winner, von Neumann winner
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