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Non-Stationary Dueling Bandits

Notions of Non-Stationarity

Algorithm

- Sequence of preference matrices Py, ..., Pz € [0, 1] %% with
Pt(CL, b) =1—- Pt<b, CL) and Pt(CL, CL) — 1/2

- The stochastic (i.e., stationary) dueling bandit problem is
recovered in the special case where P, =--- = Pr.

- Given a preference matrix P, arm a; € |[K] is called the
Condorcet Winner of P; if P(a;,b) > 1/2 forall b # a;.

- Everyround t € [T
- select a pair of actions (a, b;) € [K] x [K]
- observe preference feedback os(ay, by) ~ Ber(Py(as, b))

- Preference-strength of arm a over arm b in round ¢
0¢(a,b) = Pila,b) — 1/2.

Regret Objective: Dynamic Regret

DR(T) - Z 5t(at ) a’t) —2|_ 5t(at ) bt) .
t=1

Transitivity Assumptions:
Every P, satisfies fora =; b >, ¢

- Strong Stochastic Transitivity (SST): é:(a, ¢) > d:(a, b) V (b, ¢).
- Stochastic Triangle Inequality (STI): d:(a, ¢) < d¢(a, b) + (b, ¢).

Prior Work

Main limitations of prior work [1, 2]

- pessimistic notions of non-stationarity:.

- non-adaptive parameter tuning, i.e., require knowledge of
the number of preference changes in advance.

Research Questions

a1 Can we guarantee low dynamic regret for meaningful
notions of non-stationarity?

az. Can we achieve near-optimal regret adaptively, without
prior knowledge of the underlying non-stationarity?

1 Preference Switches (weak)

T
SP — Z 1{Pt 7é Pt—l}
t=2

2 Condorcet Winner Switches (strong)
T
S = Z H{a; # a;_}
=2

3) Significant Condorcet Winner Switches (stronger)

Let vy =1 and define v, recursively as the first round in [v;, T')
such that for allarms a € |K| there exist rounds v; < s1 < 59 <
v such that 372 6i(af,a) > /K(s2 — s1). Let S® denote the
number of such rounds vy, ..., Ve

(4) Total Variation (weak)
T

Vo= P.a,b) — Py_1(a,b
Jnax [Pi(e,b) = Piafa, b)
=2
(6) Condorcet Winner Variation (strong)

T
Ve=> max P,(a},a) — P,_i(al,a)l
=2 ¢

Observation: S < SV < SPand V < V.

Overview of Results
Algorithm DR(T) Notion Adaptive? SST&STI?
ANACONDA  O(KVSYT) @@ yes no
ANACONDA  O(KVS®T)  (3) yes yes
ANACONDA O(VA(KT)”) (5 yes yes
3] O(VKSYT) (3 yes yes
2 O(KST) @ no no
2 O(KV)PT) (4 no no
1] O(KVSPT) @ no no

Lower Bounds: Q(vKST) and Q((KV)”T%). Recently, [3]

showed that SST and STI are necessary conditions in order
to achieve O(V K S%T) regret. In fact, there exists a family of

problem instances such that S = 0, but no algorithm can
achieve o(T) regret.

Gap Estimates: Importance weighted estimates of é;(a, b):
0r(a,b) = | A" Lygean—pyor(a, b) — 1/2. o

Elimination Rule: Eliminate an arm a € |K]| in episode ¢ and
round ¢ if there exist rounds ¢, < s; < s < t such that

max Y oila’,a) > Clog(T)K /(52— s1) V K2 @)

t:Sl

Algorithm 1 ANACONDA: Adaptive Non-stationAry CONdorcet Dueling Algorithm
1 input: horizon T
2 t <+ 1
3 Whilet < T do
4. tp 1
5: -Agood < [K]
& forme{2, ..., ollee(MY and s € {t, +1,..., T} do
7 Sample By, ~ Bern( 1
8

m(s—ty)

Run Condalet(t,, T+ 1 — ty)

Algorithm 2 Condalet(t, m)

1 input: scheduled time ¢,, duration my, replay schedule {B; ., }s.m
2. initialize: t <+ ¢, A; < [K]
3 Whilet < T and ¢ <ty + mgand Ageea # 0 do
4 Play arm-pair (at, b;) € A; with each arm being selected with probability 1/|.4;]
Agood — Agood \ {a € [K]: J[s1, 59 C [tr,t) s.t. (2) holds}
Alocal — At
t<—1t+1
if 3m such that B;,, = 1 then
Run Condalet(t, m) with m = max{m € {2, ..., olloe(MN . B, |, =1}
.At < Alocal \ {CL € [K] 3[81, 82] C [t(), t) s.t. (2) hO[dS}

© © N O o

Challenges under Preference-Based Feedback

- We generally cannot decompose regret, as is done in
non-stationary MAB, due to the lack of transitivity.

- It Is more difficult to detect a bad arm, since an arm can
beat every arm except the best arm (by a large margin).

Future Work

- Other solution concepts, e.g., Borda scores, Copeland
winner, von Neumann winner
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