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Motivation

Recommendation platforms serve as intermediates between vendors
and users so as to recommend items from the former to the latter.

Vendor chosen item descriptions are an essential aspect of the
problem that is often ignored. These invite vendors to strategically
exaggerate their true value in the description to increase their click-rate.

We combine bandit learningwithmechanism design to incentivize de-
sirable vendor strategies under uncertainty while minimizing regret.

The Strategic Click-Bandit Problem

Every (strategic) arm i ∈ [K] is associated with

1) a reward distributionwith mean µi, and

2) a click-rate si which is strategically chosen by arm i.

Interaction Protocol.

1 Learner commits to an algorithm M , which is shared with all arms
2 Arms choose strategies (s1, . . . , sK) ∈ [0, 1]K, unknown to the learner
3 for t = 1, . . . , T do

4 Algorithm M selects arm it ∈ [K]
5 Arm it is clicked with probability sit

, i.e., ct,it
∼ Bern(sit

)
6 if it was clicked (ct,it = 1) then
7 Arm it receives utility 1 from the click
8 M observes noisy post-click reward rt,it

∈ [0, 1] with mean µi.

We must learn both the strategically chosen click-rates s1, . . . , sK and
the post-click rewards µ1, . . . , µK through repeated interaction.

Learner’s Utility. The learner’s utility of selecting an arm i with click-rate
si and post-click value µi is denoted by u(si, µi). As an example, consider

u(s, µ) = sµ− λ(s− µ)2.

However, we derive our results for a broad class of utility functions u :
[0, 1]× [0, 1]→ R satisfying basic regularity assumptions (Lipschitzness ...).

Arms’ Utility. Each arm i aims to maximize its total number of clicks given
algorithm M and strategies (si, s−i):

vi(M, si, s−i) := EM

[
T∑

t=1
I{it = i} ct,i

]
.

We can also express this as vi(M, si, s−i) = EM [nT (i)] · si where nT (i) is the
number of times i has been selected by the algorithm.

Nash Equilibrium and Strategic Regret

We study the situation where the arms respond to the learner’s algorithm
by acting according to the Nash Equilibrium of the game induced by the
utilities v1, . . . , vK .

Note that the arms’ strategy space is given by [0, 1]. Let σ ∈ ΣK denote a
mixed strategy profile, i.e., a distribution over pure strategies s ∈ [0, 1]K . Let

NE(M) := {σ ∈ ΣK : σ is NE under M}
denote the set of all Nash equilibria for the K arms under algorithm M .

The Strategic Regret of M under a pure-strategy NE s ∈ NE(M) is:

RT (M, s) := E

[
T∑

t=1
u(s∗, µ∗)− u(sit

, µit
)

]
.

Accordingly, for a mixed-strategy NE σ ∈ NE(M):
RT (M, σ) := Es∼σ[RT (M, s)].

Strong Strategic Regret is defined under the worst-case NE in NE(M):
R+

T (M) := max
σ∈NE(M)

RT (M, σ).

Weak Strategic Regret is defined under the best-case NE in NE(M):
R−T (M) := min

σ∈NE(M)
RT (M, σ).

Naturally, R−T (M) ≤ R+
T (M).

Limitations of Incentive-Unaware Algorithms

Proposition (simplified). The algorithm with oracle knowledge that every
round t ∈ [T ] plays the utility maximizing arm

it = argmax
i∈[K]

u(si, µi)

suffers linear regret Ω(T ) in every Nash equilibrium of the arms.

The above suggests that any incentive-unaware algorithm that is obliv-
ious to the strategic nature of the arms fails to achieve low regret.

No-Regret Incentive-Aware Learning

Based on past observations, we construct lower and upper confidences
on the arm strategies (i.e., click-rates) and the mean post-click rewards,
denoted st

i and st
i and µt

i
and µt

i, respectively

While playing optimistically w.r.t. µ1, . . . , µK, we threaten arms with elimi-
nation if we detect a deviation from the desired strategies, i.e., the strate-
gies maximizing the learner’s utility.

If we can show that the threat of elimination is credible and justified it will
incentivize arms to play close to the desired strategies.

Mechanism: UCB with Screening (UCB-S)
A0 = [K]
for t = 1, . . . , T do

if At−1 6= ∅ then

Select it ∈ argmaxi∈At−1 µt−1
i

else
Select it uniformly at random from [K]

Arm it is clicked with probability sit
, i.e., ct,it

∼ Bern(sit
)

if it was clicked (ct,it = 1) then
Observe post-click reward rt,it

if st
it

< minµ∈[µt
it
,µt

it
] s
∗(µ) or st

it
> maxµ∈[µt

it
,µt

it
] s
∗(µ) then

Ignore arm it in future rounds: At← At−1 \ {it}

Characterizing the Nash Equilibria under UCB-S

Let ∆i := µ∗ − µi with µ∗ := maxj∈[K] µj. Let s∗(µ) := argmaxs∈[0,1] u(s, µ) de-
note the strategymaximizing the learner’s utilityugivenpost-click rewardµ.
Hence, s∗(µi) is the desired strategy for arm i.

Theorem (simplified): For every pure-strategy profile in the support of a
Nash equilibrium, i.e., s ∈ supp(σ) with σ ∈ NE(UCB-S), we find that

si = s∗(µi) + O

(√
K log(T )

T
∨∆i

)
.

Due to our uncertainty about the arms’ strategies and rewards, we can
only approximately incentivize the desired strategies s∗(µ1), . . . , s∗(µK).

In particular, under the UCB-S Mechanism every arm i’s strategy is
Õ
(√

K/T ∨ ∆i

)
close to the desired strategy.

Strong Strategic Regret of UCB-S

Theorem (simplified): The strong strategic regret of UCB-S is bounded as

RT (UCB-S) = O
(√

KT log(T )
)

That is, the upper bound holds for every equilibrium σ ∈ NE(UCB-S).

A more detailed bound with a first term due to the arms exploiting UCB-S’
uncertainty about their strategies, and a second term due to the standard
MAB regret can be found in the paper.

Lower Bound onWeak Strategic Regret

Theorem (simplified): For any algorithm M there exists a problem instance
such that the algorithm M suffersweak strategic regret R−T (M) = Ω(

√
KT ).

That is, any algorithm M suffers at least regret RT (M, σ) = Ω(
√

KT ) in every
of its incentivized equilibria σ ∈ NE(M) (similar to minimax MABs).
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